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Abstract. A new cryptographic protocol —ciphertext comparison—
can compare two ciphertexts without revealing the two encrypted mes-
sages. Correctness of the comparison can be publicly verified. This tech-
nique provides an efficient and publicly verifiable solution to the famous
millionaire problem. It is the first solution to the millionaire problem to
output a precise result (the two messages are equal or which is larger).
Privacy in this new solution is achieved with an overwhelmingly large
probability and strong enough in practice.
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1 Introduction

In the millionaire problem, two millionaires want to compare their richness with-
out revealing their wealth. This problem can be formulated as a comparison of
two ciphertexts without decrypting them. The millionaire problem is an inten-
sively studied problem in multiparty computation. Since this problem was raised
by Yao [17], many multiparty computation schemes [13, 12, 6, 11, 3, 16, 2, 8, 15]
have been proposed, each of which can be applied to the millionaire problem.
However, none of the currently known multiparty computation schemes provides
an efficient and verifiable solution to the millionaire problem. Moreover, all the
existing solutions to the millionaire problem only output one bit. So they output
an imprecise result (whether a message is larger than the other or no larger than
the other), while a precise result should indicate a message is larger than the
other or equal to the other or smaller than the other. In addition, many of the
existing schemes have various other problems like lack of verifiability.

A new protocol proposed in this paper, ciphertext comparison, can efficiently
implement comparison of two encrypted messages without revealing them. A
distributed homomorphic encryption algorithm is employed to encrypt the two
messages. The ciphertext comparison technique outputs a(m1 − m2) where a is
a random and secret integer. Parameter choice guarantees that a(m1 −m2) indi-
cates the comparison result, but does not reveal any information about the two
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messages with an overwhelmingly large probability except which one is larger.
The whole protocol is publicly verifiable. Correctness, privacy, robustness, public
verifiability and high efficiency are achieved simultaneously for the first time in
solving the millionaire problem. Moreover, a precise result is output in this new
solution.

The rest of this paper is organised as follows. In Section 2, the millionaire
problem and its previous solutions are recalled. In Section 3, new primitives
needed in this paper are proposed and proved to be secure. In Section 4, the
new ciphertext comparison protocol is described. In Section 5, the new ciphertext
comparison protocol is analysed and compared against previous solutions to the
millionaire problem. The paper is concluded in Section 6.

In the rest of this paper, the following symbols are used.

– || stands for concatenation.
– �x� is the largest integer no more than x.
– PKN(x1, x2, . . . , xn|cond) stands for the proof of knowledge of a set of in-

tegers x1, x2, . . . , xn satisfying a given condition cond.

2 The Millionaire Problem and Related Work

The millionaire problem was raised by Yao [17]. In the millionaire problem, two
millionaires want to compare who is richer without revealing their wealth. This
problem can be formulated as a comparison of two encrypted messages without
revealing them. Some participants (sometimes the two millionaires themselves)
are employed to solve the problem without revealing the two messages. The
following four properties are often desired in a solution protocol to the millionaire
problem.
– Correctness: If the two ciphertexts are decrypted and then compared, the

result is the same as the protocol outputs.
– Precision: A precise result must be output to indicate exactly which of the

three possibilities (whether a message is smaller than or equal to or larger
than the other) occurs.

– Public verifiability: Each participant can be publicly verified to honestly
follow the protocol.

– Privacy: After the computation, no information about the two messages is
revealed except the comparison result.

Solutions to the millionaire problem always employ multiparty computation.
In multiparty computation, multiple participants compute a function with en-
crypted inputs and determine the result of the function without revealing the
inputs. They usually employ an evaluation circuit consisting of some logic gates
to compute the function in ciphertext. Usually the decryption key of the em-
ployed encryption algorithm is shared among the participants, so that privacy
of the encrypted inputs can be protected with an assumption that the number
of malicious participants is not over a threshold. In all the known existing multi-
party computation solutions, only an imprecise result is output (a precise result
should indicate one of the three possible results).
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According to the computation in every gate in the circuit, they can be divided
into two methods. The first method is based on encrypted truth tables. Namely,
the rows in the truth table of each logic gate in the circuit are encrypted and
shuffled, so that any legal encrypted input to each gate can be matched to an
encrypted output without being revealed. The second method is based on logic
homomorphism of certain encryption schemes. As special encryption algorithms
homomorphic in regard to the logic gates in the circuit are employed, the eval-
uation can be implemented by computing in ciphertext without the help of any
truth table. The recent schemes employing the first method include [13], [12],
[6], [11] and [3]. The recent schemes employing the second method include [16],
[2], [8] and [15]. None of them provides a correct, precise, private, verifiable and
efficient solution to the millionaire problem. Such a solution will be designed in
this paper. The new technique is called ciphertext comparison. It employs the
second method, but in a novel manner.

3 Preliminary Work

Three cryptographic primitives are presented in this section and will be applied
to the new ciphertext comparison protocol. All multiplications in this section
are with a modulus N2 where N is the Paillier composite [14].

3.1 Proof of Knowledge of N th Root modZ∗
N2

Proof of knowledge of root was proposed by Guillou and Quisquater [10], in which
an honest verifier ZK proof of knowledge of vth root with a composite modulus
n was presented and proved to be secure. A variation of the proof protocol of
knowledge of root in [10] is described here. In the protocol in Figure 1, a specific
setting is employed: knowledge of N th root modulo N2 must be proved where
N is a Paillier composite. The protocol is used to prove the knowledge of x,
the N th root of y and an integer in Z∗

N2 , where P and V stand for prover and
verifier. This proof protocol is consistent with the Paillier setting and can be
applied to verify the validity of Paillier encryption. Correctness of this protocol
is straightforward. Namely, when the prover knows a N th root of y, he can pass
the verification. Since the setting is different from the original protocol in [10],
it must be proved that the new protocol is sound with Paillier setting.

P → V : b = rN where r is randomly chosen from ZN .

V → P : e, where |e| = 160.

P → V : w = rxe

Verification: wN = bye

Fig. 1. Proof of Knowledge of N th Root
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Theorem 1. The proof protocol of knowledge of N th root in Figure 1 is specially
sound if N is correctly generated. More precisely, if the prover can provide correct
responses to two different challenges with a same commitment, he can calculate
a N th root of y efficiently.

Proof: If the prover can provide responses w1 and w2 to a commitment b and
two different challenges e1 and e2 where e1 > e2, such that

wN
1 = bye1 (1)

wN
2 = bye2 (2)

then (1) divided by (2) yields

(w1/w2)N = ye1−e2

According to the Euclidean algorithm, integers α and β can be found, such
that β(e1 − e2) = αN + gcd(N, e1 − e2). As N = pq is correctly generated, p
and q are primes and the length of p and q is much longer than |e1 − e2|, so
gcd(N, e1 − e2) = 1. So

(w1/w2)βN = yβ(e1−e2) = yαN+1

Namely,
y = ((w1/w2)β/yα)N

So, (w1/w2)β/yα is a N th root of y. Note that the prover can calculate α and β
efficiently from N and e1 − e2 using Euclidean algorithm. Therefore, the prover
can get a N th root of y efficiently. �

Theorem 2. The proof protocol of knowledge of N th root in Figure 1 is honest
verifier zero knowledge.

Proof: A simulator with no knowledge of any N th root of y can choose e and w
randomly and calculate b = wN/ye. Thus a simulated transcript composed of
uniformly distributed b, e and w is obtained. The proof transcript generated by
a prover with knowledge of an N th root of y and an honest verifier (who chooses
the challenge randomly and independently) is also composed of uniformly
distributed e, w, b. These two transcripts are indistinguishable. So these two
proof transcripts are indistinguishable. �

According to Theorem 1 and Theorem 2, this proof protocol is a so-called
Σ-protocol [7]. So according to Damgard’s analysis in [7], this proof is sound
(the probability that a prover without the knowledge of a N th root of y can
pass the verification in this protocol is no more than 2−160) and private (the
prover’s knowledge of N th root of y is not revealed). Hash function H() can be
employed to generate the challenge as e = H(y||b), so that the protocol becomes
non-interactive. In the rest of this paper, non-interactive proof of knowledge
of N th root is applied. If H() can be seen as a random oracle, security is not
compromised in the non-interactive proof.
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3.2 Proof of Knowledge of 1-Out-of-2 N th Root modZ∗
N2

The proof protocol in Figure 2 is a combination of the proof of N th root in
Figure 1 and the proof of partial knowledge [5] to prove the knowledge of x, the
N th root of y1 or y2, integers in Z∗

N2 . For simplicity, it is supposed without losing
generality xN = y2. Correctness of this protocol is straightforward. Namely, when
the prover knows a N th root of either y1 or y2, he can pass the verification. As the
proof of knowledge of N th root modulo N2 in Section 3.1 and the partial proof
technique in [5] are both specially sound and honest verifier ZK, this protocol
is also specially sound and honest verifier ZK. Namely, the probability that a
prover without the knowledge of a N th root of y1 or y2 can pass the verification
in this protocol is no more than 2−160 the prover’s knowledge of N th root of y1
or y2 is not revealed. Moreover, this protocol can also be extended to be non-
interactive without compromising its security when a hash function regarded as
a random oracle is used to generate the challenge e.

1. The prover chooses r, w1 and e1 randomly from Z∗
N , Z∗

N2 and {0, 1}160

respectively. He calculates b1 = wN
1 ye1

1 and b2 = rN .
2. The verifier randomly chooses a 160-bit challenge e.
3. The prover calculates e2 = e − e1 and w2 = r/xe2 .
4. The prover publishes e1, w1, e2 and w2. Anybody can verify e = e1 + e2

and b1 = wN
1 ye1

1 and b2 = wN
2 ye2

2 .

Fig. 2. Proof of Knowledge of 1-out-of-2 N th Root

3.3 A Combined Proof of Equality of Exponents and Knowledge of
N th Root

Let g1, g2, y1 and y2 be in Z∗
N2 . The proof protocol in Figure 3 is used to prove

PKN(x, r1, r2 | x ∈ Z, r1 ∈ Z∗
N , r2 ∈ Z∗

N , y1 = gx
1rN

1 , y2 = gx
2rN

2 ). Correctness
of this protocol is straightforward. Namely, if the prover knows x, r1, r2 and
follows the protocol, the verifier will accept his proof. Soundness of this protocol
seems at first to be straightforward if it is regarded as a combination of proof of
equality of logarithms [4] and proof of knowledge of N th root in Section 3.1, both

1. The prover chooses v ∈ ZN , u1 ∈ Z∗
N and n2 ∈ Z∗

N randomly and calculates
γ = gv

1uN
1 and θ = gv

2uN
2 . He sends γ and θ to the verifier.

2. The verifier randomly chooses a 160-bit challenge e and sends it to the prover.
3. The prover calculates z1 = v − ex, z2 = u1/re

1, z3 = u2/re
2 and sends them to the

verifier.
4. The verifier verifies γ = gz1

1 zN
2 ye

1 and θ = gz1
2 zN

3 ye
2. He accepts the proof only if

these two equations are correct.

Fig. 3. Combined Proof of Equality of Exponent and Knowledge of N th Root
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of which are sound. However, in this protocol, g1 and g2 may be in two different
cyclic groups with different orders. As the proof of equality of logarithms in [4]
can only be applied to prove equality of logarithms in a same group or two groups
with a same order, it cannot be applied here. To the authors’ knowledge, the
only technique to prove equality of logarithms in groups with different orders
was proposed by Bao [1]. However, his technique is only sound (passing his
verification guarantee two logarithms in different groups with different orders
are equal with a very large probability) but not correct (lots of equal logarithm
pairs in the two groups cannot pass the verification with a very large probability)
so can only be applied to his special application — a verifiable encryption scheme.
As our protocol must be both correct and sound, our technique is different from
his in that equality of exponents instead of equality of logarithms is proved.
Namely, it is not required in our scheme that the two exponents are equal with
two different moduluses. It is enough that the two exponents are equal without
any modulus. Soundness of our protocol is proved in Theorem 3.

Theorem 3. The proof protocol in Figure 3 is specially sound. More precisely,
if the prover can provide correct responses for two different challenges to a same
commitment, he can efficiently calculate x, r1 and r2, such that x ∈ Z, r1 ∈ Z∗

N ,
r2 ∈ Z∗

N , y1 = gx
1 rN

1 , y2 = gx
2 rN

2 if N is correctly generated.

Proof: If the prover can provide two sets of responses z1,1, z2,1, z3,1 and z1,2,
z2,2, z3,2 for two different challenges e1 and e2 and the same commitment pair
γ, θ, such that

γ = g
z1,1
1 zN

2,1y
e1
1 (3)

θ = g
z1,1
2 zN

3,1y
e1
2 (4)

γ = g
z1,2
1 zN

2,2y
e2
1 (5)

θ = g
z1,2
2 zN

3,2y
e2
2 (6)

(3) divided by (5) yields

g
z1,1
1 zN

2,1y
e1
1 = g

z1,2
1 zN

2,2y
e2
1

So,
g

z1,1−z1,2
1 (z2,1/z2,2)N = ye2−e1

1

(4) divided by (6) yields

g
z1,1−z1,2
2 (z3,1/z3,2)N = ye2−e1

2

According to the Euclidean algorithm, integers α and β can be found, such that
β(e1 − e2) = αN + gcd(N, e1 − e2). So

g
β(z1,1−z1,2)
1 (z2,1/z2,2)βN = y

αN+gcd(N,e1−e2)
1

and
g

β(z1,1−z1,2)
2 (z3,1/z3,2)βN = y

αN+gcd(N,e1−e2)
2
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As N = pq and the p and q are primes with length much longer than |e1 − e2|
(N is a correctly generated Paillier composite), gcd(N, e1 − e2) = 1. So,

g
β(z1,1−z1,2)
1 ((z2,1/z2,2)β/yα

1 )N = y1 (7)

and
g

β(z1,1−z1,2)
2 ((z3,1/z3,2)β/yα

2 )N = y2 (8)

Note that the prover can efficiently calculate α and β easily from N and e1 − e2
using Euclidean algorithm. Therefore, the prover can get x = β(z1,1 − z1,2),
r1 = (z2,1/z2,2)β/yα

1 and r2 = (z3,1/z3,2)β/yα
2 efficiently, such that x ∈ Z,

r1 ∈ Z∗
N , r2 ∈ Z∗

N , y1 = gx
1rN

1 , y2 = gx
2rN

2 . �

Theorem 4. The proof protocol in Figure 3 is honest verifier zero knowledge.

This theorem can be proved like Theorem 2.
According to Theorem 3 and Theorem 4, the proof protocol in Figure 3 is

sound (the probability that a prover without the required knowledge can pass
the verification in this protocol is no more than 2−160) and private (the prover’s
secret knowledge is not revealed). A hash function H() can be employed to
generate the challenge as e = H(y1||y2||γ||θ), so that the protocol becomes non-
interactive. In the rest of this paper, the non-interactive version of this proof
is applied. If H() can be seen as a random oracle, security is not compromised
in the non-interactive proof. Note that this protocol does not guarantee the
secret knowledge x is smaller than order(g1) or order(g2). That is why we say
that equality of exponents instead of equality of logarithms is included in this
protocol.

4 Ciphertext Comparison

Suppose two L-bit messages m1 and m2 encrypted in c1 and c2 respectively are to
be compared. The main idea of the comparison is comparing F (m1) and F (m2)
where F () is a monotonely increasing one-way function. Based on this idea, a
comparison technique Com(c1, c2) can be designed, such that Com(c1, c2) = 1
if m1 > m2; Com(c1, c2) = 0 if m1 = m2; Com(c1, c2) = −1 if m1 < m2. The
comparison procedure is as follows.

1. An additive homomorphic encryption algorithm with encryption function
E() is employed, such that E(x1 + x2) = E(x1)E(x2) and E(ax) = E(x)a

for any messages x, x1, x2 and factor a. The public key is published while
the private key is shared by participants A1, A2, . . . , Am. The message space
of the encryption algorithm is {0, 1, . . . , N − 1}, where 2L+mL′

< �N/2� and
L′ is a security parameter.

2. mi is encrypted into ci = E(mi) for i = 1, 2. It is proved that ci is an
encryption of a message with L bits without revealing the message for i =
1, 2.
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3. Each Al chooses al so that al ∈ {0, 1, . . . , 2L′ − 1} and calculates c′l = c′al

l−1

for i = 1, 2 where c′0 = c1/c2. Al proves logc′
l−1

c′l < 2L′
without revealing al

for l = 1, 2, . . . , m.
4. The authorities cooperate to decrypt c′m.

Com(c1, c2) =

⎧
⎨

⎩

1 if 0 < D(c′m) ≤ �N/2�
0 if D(c′m) = 0
−1 if D(c′m) > �N/2�

(9)

Any distributed additive homomorphic encryption algorithm can be employed
in this ciphertext comparison. In this section, the ciphertext comparison protocol
is described in detail based on distributed Paillier (see [9]).

4.1 Bit Encryption and Its Validity Verification

Messages m1 and m2 must be encrypted in a special way such that it is publicly
verifiable from their encryptions that they are in the range {0, 1, . . . , 2L −1}. So
the following encryption-by-bit method is employed.

– Paillier encryption with distributed decryption (see [9]) is employed such
that the parameters N , m, L′ and L satisfy 2L+mL′

< (N − 1)/2 where m
is the number of participants and N is the Paillier composite.

– Binary representation of mi is a vector (mi,1, mi,2, . . . , mi,L) for i = 1, 2
where mi,j ∈ {0, 1} and mi =

∑L
j=1 mi,j2j−1.

– Component mi,j is encrypted with Paillier encryption to ci,j = gmi,j rN
i,j mod

N2 for i = 1, 2 and j = 1, 2, . . . , L where ri,j is randomly chosen from Z∗
N .

– The encrypted vectors (ci,1, ci,2, . . . , ci,L) for i = 1, 2 are published.
– The encryptor (millionaire or more generally message provider) proves that

each ci,j is an encryption of 0 or 1 by providing a proof of knowledge of c
1/N
i,j

or (ci,j/g)1/N for i = 1, 2 and j = 1, 2, . . . , L. Proof of knowledge of 1-out-
of-2 N th root in the Paillier setting described in Section 3.2 is employed in
the proof.

– Anybody can verify validity of ci,j for i = 1, 2 and j = 1, 2, . . . , L.
If the verification is passed, two ciphertexts ci =

∏L
j=1 c2j−1

i,j mod N2 =

g
�L

j=1 mi,j2j−1
rN
i mod N2 = gmirN

i mod N2 for i = 1, 2 are formed for com-
parison where ri =

∏L
j=1 r2j−1

i,j mod N .

Only if the two ciphertexts are verified to be L bits long, can they be compared.

4.2 The Comparison Function

The authorities A1, A2, . . . , Am compare c1 = gm1rN
1 mod N2 and c2 =

gm2rN
2 mod N2 and validity of the comparison can be publicly verified.

1. al is selected randomly from {0, 1, . . . , 2L′ −1} while its validity is guaranteed
by bit encryption and its validity verification.
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(a) Al chooses al randomly from {0, 1, . . . , 2L′ − 1} with binary representa-
tion
(al,1, al,2, . . . , al,L′) where al =

∑L′

j=1 al,j2j−1. He keeps them secret and
publishes dl,j = gal,j tNl,j mod N2 for j = 1, 2, . . . , L′ where tl,j is ran-
domly chosen from Z∗

N .
(b) Al proves that each dl,j contains 0 or 1 by providing a proof of knowledge

of N th root of either dl,j or dl,j/g modulus N2 as proposed in Section 3.2.
(c) Anybody can verify the validity of dl,j for j = 1, 2, . . . , L′ and calculates

dl =
∏L′

j=1 d2j−1

l,j mod N2, which is a commitment of al.
Only if dl for l = 1, 2, . . . , m are verified to be valid, the comparison contin-
ues.

2. Each Al performs c′l = c′al

l−1s
N
l mod N2 for l = 1, 2, . . . , m where c′0 =

c1/c2 mod N2 and sl is randomly chosen from Z∗
N . Al has to give a proof

PKN(al, tl, sl | al ∈ Z, tl ∈ Z∗
N , sl ∈ Z∗

N , dl = galtN1 mod N2,

c′l = c′al

l−1s
N
l mod N2) (10)

where tl =
∏L′

j=1 t2
j−1

l,j mod N . This proof can be implemented using the
combined proof of equality of exponent and knowledge of N th root proposed
in Section 3.3 and is called monotone proof. Only if the verification is passed,
the comparison continues.

3. The authorities corporately compute Com(c1, c2) by decrypting c′m.
4. Result of comparison

Com(c1, c2) =

⎧
⎨

⎩

1 if 0 < D(c′m) ≤ (N − 1)/2
0 if D(c′m) = 0
−1 if D(c′m) > (N − 1)/2

(11)

5 Analysis

The ciphertext comparison technique is analysed and compared against the pre-
vious solutions to millionaire problem in this section.

5.1 Security and Efficiency Analysis

Theorem 5. The proposed ciphertext comparison protocol is correct and sound.
More precisely, assume it is infeasible for any Al to find s and t, such
that t �= 1 mod N and gstN = 1 mod N2, then iff m1 < m2 < 2L,
Com(E(m1), E(m2)) = −1; iff m1 = m2 < 2L, Com(E(m1), E(m2)) = 0;
iff m2 < m1 < 2L, Com(E(m1), E(m2)) = 1.

Proof: As the combined proof of equality of exponents and knowledge of N th

root in Section 3.3 is sound, monotone proof (Formula (10)) guarantees that Al
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knows a′
l, t′l and sl such that a′

l ∈ Z, t′l ∈ Z∗
N , sl ∈ Z∗

N , dl = ga′
lt′N1 mod N2 and

c′l = c′a
′
l

l−1s
N
l mod N2. As Paillier encryption algorithm is additive homomorphic,

D(c′m) = D((c1/c2)
�m

l=1 a′
l) =

D(c
�m

l=1 a′
l

1 /c
�m

l=1 a′
l

2 ) = D(c
�m

l=1 a′
l

1 ) − D(c
�m

l=1 a′
l

2 ) mod N

= D((gm1rN
1 )
�m

l=1 a′
l) − D((gm2rN

2 )
�m

l=1 a′
l) mod N

= D(gm1
�m

l=1 a′
l(r
�m

l=1 a′
l

1 )N ) − D(gm2
�m

l=1 a′
l(r
�m

l=1 a′
l

2 )N ) mod N

In Section 4.1, validity of dl,j for j = 1, 2, . . . , L′ is proved by Al using the
proof of knowledge of 1-out-of-2 N th root proposed in Section 3.2. As the proof
of knowledge of 1-out-of-2 N th root is sound, it is guaranteed that Al knows
al,j and tl,j for j = 1, 2, . . . , L′, such that tl,j ∈ Z∗

N , al,j ∈ {0, 1} and dl,j =
gal,j tNl,j mod N2. As dl =

∏L′

j=1 d2j−1

l,j mod N2, Al knows al =
∑L′

j=1 al,j2j−1

and tl =
∏L′

j=1 t2
j−1

l,j mod N , such that tl ∈ Z∗
N , al < 2L′

and dl = galtNl mod
N2. Therefore, ga′

lt′N1 = galtNl mod N2. Namely, ga′
l−al(t′l/tl)N = 1 mod N2.

As a result, t′l = tl mod N , otherwise Al can find t′l/tl and a′
l − al, such that

t′l/tl �= 1 mod N and ga′
l−al(t′l/tl)N = 1 mod N2, which is contradictory to the

assumption that it is infeasible to find s and t, such that t �= 1 mod N and
gstN = 1 without knowledge of factorization of N . So al = a′

l mod order(g).
Therefore,

D(c′m) = D(gm1
�m

l=1 al(r
�m

l=1 al

1 )N ) − D(gm2
�m

l=1 al(r
�m

l=1 al

2 )N ) mod N

= D(E(m1
∏m

l=1 al)) − D(E(m2
∏m

l=1 al)) mod N

= m1
∏m

l=1 al − m2
∏m

l=1 al mod N

Since it has been publicly verified that 2L+mL′
< (N − 1)/2, mi ∈

{0, 1, . . . , 2L − 1} and al ∈ {0, 1, . . . , 2L − 1} for l = 1, 2, . . . , m, function
F (mi) = mi

∏m
l=1 al is monotonely increasing and smaller than �N − 1�/2.

Therefore, if m1, m2 < 2L,

D(c′m)

⎧
⎨

⎩

∈ (0, (N − 1)/2] iff m1 > m2
= 0 iff m1 = m2
> (N − 1)/2 iff m1 < m2

(12)

�

The assumption that it is infeasible for Al to find s and r, such that r �=
1 mod N and gsrN = 1 mod N2 without knowledge of factorization of N is
correct because it seems reasonable to assume that given a constant z it is
infeasible to find x and y, such that f1(x)f2(y) = z where f1() and f2() are
one-way functions. As factorization of N is kept secret to any single authority,
both f1(x) = gx mod N2 and f2(y) = yN mod N2 are one-way functions to Al.
Moreover, if this assumption is incorrect, any Paillier ciphertext can be decrypted
into multiple different messages, which is contradictory to the wide belief that
Paillier encryption is secure. Therefore, this assumption is reliable.
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The encryption verification in Section 4.1 is private as illustrated in Sec-
tion 3.2. Privacy of the comparison in Section 4.2 is analysed as follows. If Al

does not reveal al, it is computationally infeasible for any other party to get any
information about al from dl as Paillier encryption is secure when the number
of dishonest authorities is not over the threshold. Validity proof of dl is private
as it is a proof of knowledge of 1-out-of-2 N th root proposed in Section 3.2.
Monotone proof (Formula (10)) is private as it is a combined proof of knowledge
of 1-out-of-2 N th root and equality of exponents proposed in Section 3.3. So al is
not revealed in these two proofs. So m1 − m2 is not revealed from D(c′m), which
is equal to

∏m
l=1 al(m1 − m2) mod N . Therefore, none of m1, m2 or m1 − m2

are revealed. However, when D(c′m) is too near to the boundaries of its value
domain (in (0, 2L), (N −2L, N), (2mL′

, 2L+mL′
) or (N −2L+mL′

, N −2mL′
)) par-

tial information is revealed from m1 − m2. The revelation of partial information
is demonstrated in Table 1. An example is given in Table 1, where N is 1024
bits long (according to the widely accepted security standard) and L = 40 (large
enough for practical applications). As illustrated in Table 1, D(c′m) is usually far
away from the boundaries and is in the four special ranges with an overwhelm-
ingly small probability. So, the ciphertext comparison protocol is private with
an overwhelmingly large probability. Therefore, the whole ciphertext comparison
protocol is private with an overwhelmingly large probability.

Table 1. Partial information revelation from m1 − m2

Phenomenon Revelation Probability

value example

Case 1 D(c′
m) ∈ (0, 2L) m1 − m2 ∈ (0, D(c′

m)] 2L/N 2−984

Case 2 D(c′
m) ∈ (N − 2L, N) m2 − m1 ∈ (0, D(c′

m)] 2L/N 2−984

Case 3 D(c′
m) ∈ (2mL′

, 2L+mL′
) m1 − m2 ∈ [D(c′

m)/2mL′
, 2L) 2L/N 2−984

Case 4 D(c′
m) ∈ (N − 2L+mL′

, N − 2mL′
) m2 − m1 ∈ [D(c′

m)/2mL′
, 2L) 2L/N 2−984

Totally 2L+2/N 2−982

As the encryption verification in Section 4.1 is a proof of knowledge of 1-out-of-
2 N th root proposed in Section 3.2, it is sound, namely a ciphertext containing
an invalid message can pass the verification with a negligible probability. So
the ciphertext comparison protocol is robust. As each step in the ciphertext
comparison protocol is publicly verifiable, public verifiability is achieved. As no
complex circuit is used, the ciphertext comparison scheme is quite efficient.

5.2 Comparison

A comparison between the new solution to the millionaire problem and the ex-
isting solutions is provided in Table 2, where the modular multiplications are
counted in regard to computation and transportation of integers with signif-
icant length (e.g. 1024 bits long) is counted in regard to communication. The
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schemes in [6] and [2] are similar to [11] and [16] respectively, so are not analysed
separately. K is the full-length of exponent, t is the cutting factor in the cut-and-
choose mechanism in [13] and [12], λ is a parameter in [8] and T is a parameter
in [15]. An example is used in Table 2, where fair values are chosen for the pa-
rameters: |N | = 1024, K = 1024, m = 3, L = 100, L′ = 10, t = 40, λ = 40
and T = 20. According to this comparison, the proposed ciphertext comparison
technique is the only efficient, publicly verifiable, private and precise solution to
millionaire problem.

Table 2. Property comparison

Public Precise Computation Communication

verifiability result cost example cost example

[13] No No ≥ 15KLt ≥ 40960000 ≥ 37Lt + 2t ≥ 148080

[12] Yes No ≥ 15KLt ≥ 40960000 ≥ 37Lt + 2t ≥ 148080

[11] Yes No average 4665KL + 6 477696006 average 1626L + 6 162606

[3] Yes No average ≥ 4039.5KL ≥ 413644800 ≥ 1543L ≥ 154300

[16] No No > L4 > 100000000 ≥ 343L3 ≥ 343000000

[8] No No (1.5λL(L + 3)) + (λ + 1)L(L + 1))/2 516050 L(λ + 2) 4200

[15] Yes No (L + 2)(L − 1)(1 + 0.5T ) + 37.5KL 4052058 25L 2500

Proposed Yes Yes 1.5K(5mL′ + 8m + 10L) 1803264 5mL′ + 4m + 10L 1162

6 Conclusion

A new cryptographic technique —ciphertext comparison— is proposed to com-
pare two ciphertexts and determine which contains a larger message. This new
technique is the only efficient and publicly verifiable solution to the millionaire
problem. It is also the only precise solution to the millionaire problem. In the
new scheme privacy of the two messages is protected with an overwhelmingly
large probability.
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